Decision Transformer With Tokenized Action Space

Graham Annett ', Tim Andersen '

! Boise State University
grahamannett@u.boisestate.edu

Abstract

In the realm of reinforcement learning (RL), the vision of de-
veloping models capable of generalizing across myriad envi-
ronments has remained elusive. While the Decision Trans-
former (DT) and Trajectory Transformer (TT) have made
headway, challenges remain, especially in their adaptability
to diverse problems without the need for extensive retrain-
ing. We introduce an innovative approach that emphasizes
action tokenization, borrowing concepts from large language
models (LLM). Rather than comprehensively tokenizing the
state, action, and reward trajectories, we introduce an action-
centric tokenization schema. This has the advantage of retain-
ing the state space in its native form and fosters environment-
agnostic model training. Two tokenized action embeddings,
namely, ActionTokenizedEmbedding and ActionTokenized-
SpreadEmbedding, are explored, providing flexibility and
adaptability. Preliminary results show the model’s potential
for quick acclimation to new terrains.

Introduction

In the rapidly evolving domain of reinforcement learning
(RL), the promise of generalization across diverse environ-
ments has been a long-standing goal. Recent strides in deep
learning have illuminated a path forward with the rise of
the Decision Transformer (DT) (Chen, Lu, Rajeswaran, Lee,
Grover, Laskin, Abbeel, Srinivas, and Mordatch 2021) and
Trajectory Transformer (TT) (Janner, Li, and Levine 2021)
which vastly simplify many aspects of RL. These models,
highly capable and achieving remarkable results for many
tasks and environments, have allowed training of offline RL
models that is in many ways more similar to the training of
language models than to the training of traditional RL algo-
rithms.

While the DT and TT models rely heavily on the trans-
former architecture, they are still relatively specific to the
environment they are trained on and there has yet to be any-
thing similar to the foundation models that have been devel-
oped for language models. Some aspects that prevent these
RL models from being as adaptable as their language model
counterparts is the need for model components that are en-
vironment or task specific which differs from the language

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

models that can be trained on a single task and then fine-
tuned for a new task with only a single output head or of-
ten no architecture change. Other issues include the need for
quite large datasets as transformers are known to be sam-
ple inefficient, and the need to condition on future rewards
which can fail in stochastic environments. This work ad-
dresses these issues in part by adapting the model to resem-
ble language models more closely to allow advancement in
their ability to work on downstream tasks.

The present study introduces a novel approach that lever-
ages the strengths of the Decision Transformer, specifically
focusing on the action space through a unique tokeniza-
tion schema. By preserving the state space in its original
form and adopting this action-only tokenization, our model
is trained in an environment-agnostic fashion. This approach
emphasizes the centrality of actions in the decision-making
process, enabling swift adaptability in unfamiliar terrains.
Our work sets the stage for the development of foundational
models in RL, proposing a vision where a single training
schema can be employed across tasks, with simple fine-
tuning in both supervised and unsupervised manner suffic-
ing for novel environments.

Background

Training an agent for a task or environment with only pre-
collected data is known as offline reinforcement learning
(Levine et al. 2020). These trajectories are typically com-
posed of a sequence of states, actions, and rewards, but may
also include additional information, are collected either by
an online algorithm or from expert examples, with the goal
that an offline agent can learn from these examples with-
out having to interact with the environment. In compari-
son to the more studied and well known realm of online
algorithms, offline RL is particularly appealing in scenar-
ios where agents face costly or risky online data collection,
and research focused on making offline agents more able to
adept to new environments is a critical area of research.
The field of RL has many different ways in which it can
be categorized but this work uses the framing of models or
agents into two broad categories: model-based and model-
free. Although each of these framings have a variety of ap-
proaches and techniques associated with them, the models
that we focus on are model-free. Model-free methods are
often seen as appealing due to their algorithmic simplicity

(causal sequence modeling) and architecture (a transformer
based architecture). In terms of the models and approaches
that guide this work, model-based approaches (i.e. the Tra-
jectory Transformer (Janner, Li, and Levine 2021)) have at-
tractive properties such as the ability to generate an arbitrary
future sequence that can be used for bootstrapping (Wang
et al. 2022) and beam-search. The drawback of this approach
is that due to the need to tokenize across all the input modal-
ities, the resulting sequences are exponentially larger than
the original sequence. Often this sequence length growth
can largely be attributed to the observation space, which is
typically much larger than the action space. Overall this ap-
proach is conceptually the most similar to how many of the
current state of the art language models work.

On the other hand, transformer based model-free ap-
proaches that frame the problem as a sequence modeling
task focused only on predicting the next action conditioned
on some reward(Chen et al. 2021), do not suffer from this
exponential growth in sequence length, but are not without
their own challenges such as brittleness in stochastic envi-
ronments and the need for future rewards (Paster, Mcllraith,
and Ba 2022; Gao et al. 2023; Meng et al. 2022; Yamagata,
Khalil, and Santos-Rodriguez 2022).

Both of these approaches (DT and TT) contain many
of the same framings and aspects, for example the model
is mostly comprised of a decoder transformer architecture
with a causal masking scheme, and given a trajectory of
(8¢, az, 1), the inputs are eventually interleaved to create a
sequence similar to (although the ordering and number per
modality can be different):

(80,@0,70, 51,01, 71, - - -, ST, AT, T'T) (H

The relative computational efficiency and simplicity of
the DT in particular, which embeds each of these modali-
ties independently and results in a single vector of some em-
bedding size per timestep, means that while the model can
typically ingest longer contexts than a similar TT model, the
trained model parameters are highly specific to a particu-
lar dataset and environment. Recent work aimed at devising
general pretraining regimens (Sun et al. 2023) such that the
model can be fine-tuned downstream for a different environ-
ment appear to work well, but depend on the state space be-
ing similar dimensionality between tasks (e.g. an RGB im-
age).

Although it is possible to fine-tune pretrained models on
downstream tasks for model sizes typically seen in offline
RL (Tarasov et al. 2023), this is unlikely to be the case for
large foundational models for RL. For many researchers, the
usage of LLMs (Touvron et al. 2023) (Jiang et al. 2023)
is impractical without access to substantial resources (e.g.,
80GB A100/H100 GPUs) and technical know how (Zhao
et al. 2023). Despite these concerns, techniques that allow
researchers to use LLMs for RL tasks have been successful
by primarily adapting techniques such as LoRA (Hu et al.
2021) and largely benefit from ideas originally put forth for
NLP tasks (Shi et al. 2023).

The ability to adapt larger models initially trained on NLP
tasks (Reid, Yamada, and Gu 2022) hints at the notion that
large generalized RL models are indeed possible and could

be used in a manner which does not require vast compu-
tational resources or large amounts of additional training
data, but would likely require a more generalized approach
to training which is the focus of this work.

Method

Our approach follows the basic formulation put forth in the
original DT work (Chen et al. 2021), where an offline dataset
Dottiine is comprised of many trajectories 7 = (s7, ar, rr)
that are tuples of states s € S, actions a € A and rewards
r € R. This dataset is collected from expert examples or
another algorithm typically in an online manner.

The goal of our model is not to maximize some expected
reward (i.e. a typical approach for RL algorithms), instead
the model is conditioned on some starting reward A which
is computed from the discounted sum of returns-to-go, and
given a trajectory 7 the model is trained to minimize a loss
calculated from the predicted actions at each timestep ¢. This
can be represented as follows:

T—1
E(T) = Zpe(at|st7a<tar<t7A) (2)
t=0
For our work this value can be computed from the pre-
dicted action at each timestep and is the standard Lo loss:

Lo(1) = |lar — a|? 3)

where a is the predicted action at timestep .

The reason for choosing to tokenize only actions is that
an action space is generally smaller than the state space.
This allows the spreading of the actions into the modality
dimension while limiting the growth of the context length
(as opposed to spreading the state vector which would grow
the context length by a much larger factor). In addition to
this reasoning, if one were to tokenize and spread all inputs
(e.g. actions, states and rewards), the method becomes much
more similar to that of TT (Janner, Li, and Levine 2021),
which we found needed the works beam search method to
generate actions that are of similar quality to the DT model.
As our model outputs a single action vector and does not
utilize a decoding schema (unless the action requires scaling
beyond (—1, 1)), the beam search method is not applicable
to our model.

Action Tokenization

The key idea of our approach is that we tokenize select types,
but not all, of the input modalities (i.e. state, actions, re-
wards). By doing so we are able to train our model to be
more adaptable to new environments as new environments
will require fewer aspects of the model to be adjusted.

Tokenization Schema We tokenize the action space using
a quantization schema, which transforms continuous values
into a discrete set of tokens. To tokenize our actions we con-
sider each feature of the action space independently and to-
kenize as such:

i—1

T, = Qiai) + Y |Q;] (4)

=0

In equation 4, T; is the token for the i-th feature, Q;(a;)
is the quantize function for the ¢-th feature applied to the
action a;, and |Q;| is the number of tokens for the j-th fea-
ture. While the sum runs over all preceding features, which
means that the i-th feature can be represented by its own
range of tokens, there is no particular reason why different
features (i.e. a* and a**1) cannot both be contained in the
same token range (by omitting the offset |Q,|). We discuss
the implications and results of this choice further in the re-
sults section.

Tokenization Embedding We investigate two differing
approaches for handling tokenized actions: ActionTok-
enizedEmbedding and ActionTokenizedSpreadEmbed-
ding. In the former, actions are pooled per timestep and then
interleaved with states and rewards. In the latter, actions are
unpacked along the modality dimension (e.g. along the di-
mension the states and rewards are initially stacked upon),
allowing for an embedding layer that utilizes the same pa-
rameters across different tasks and environments.

By distributing actions across the modality dimension, the
ActionTokenizedSpreadEmbedding approach enables the
model to generate the same number of actions that the un-
folded action features have been spread to in an autoregres-
sive manner. This flexibility allows us to either generate a
predefined number of actions by padding the input or to
dynamically produce the required number of actions in the
same way LLMs sequentially generate tokens.

The action generation process during evaluation can be
formalized as:

iy ~ Py(aj|s<i,aS],re) Q)

In Equation 5, a! represents the i-th action at timestep .
Actions are generated autoregressively, allowing the model
to produce any number of actions for the latest timestep. Im-
portantly, the action embedding and action head shapes re-
main consistent across downstream tasks.

Following the ActionTokenizedSpreadEmbedding
strategy, a single timestep of actions with dimension d,
is expanded to include an additional d, — 1 values. This
action dimension expansion is distinct from flattening, as it
remains ambiguous whether actions from the same timestep
or index are interleaved (e.g., aj, al, ... versus af, al,...).

After this spreading and interleaving, the resulting se-
quence conforms to Equation 6, as opposed to Equation 1.
The training regimen for this method is detailed in Al-
gorithm 1. A comparison of the performance of both ap-
proaches as compared to the original DT model (which we
refer to as the baseline) is presented in the results section.

[_ 0o ,1 0
rn,sman =T0,50,00,Q0,---,71,51,A7, ..., (6)

Where here a, is the i-th feature of the action at timestep
n.

Downstream Tasks

One of the aims of this research is to facilitate adaptation to
new modalities or environments for downstream tasks with

Algorithm 1: Action Tokenized Spread DT

Input: A model and H,, Hs, H,, H; modality
embedding layers, T tokenization schema, n;
training iterations

Output: Hy model

Data(Dataset Doggine, trajectories T (sfs , af“ ,Tt))

2 forn=1,...n;do

—

/+ draw batch from the dataset */
3 T < Dotfiine

/* tokenize the actions */
4 a +— T(af“)

/+ embed input modalities */

5 E. Es,E, < H.(r), Hs(s), Hy(a)

/+ position & timestep embeddings */
Et — Ht(t)

EryEsaEa — Er + Et7Es + EtyEa + Et

/* actions into modality dimension

*/
8 Eé c R(T«la)Xe s Ea c RTxdaXe

/* interleave inputs along T */
9 E + concat(E,., Es, E!)
/* forward and backward pass */

10 Hy < update(H, L,,5.(a, H(E)))

minimal alterations to the model architecture while preserv-
ing the state space (meaning no tokenization of the state and
reward inputs similar to TT). While the observation spaces
may differ across environments, the action embedding layer
can remain consistent, requiring only a new state embedding
layer (and action head in the case of ActionTokenizedEm-
bedding).

We opt to train new embedding layers explicitly but also
recognize the potential in methods similar to (Reid, Yamada,
and Gu 2022), which could align new layers with pretrained
ones, or use unsupervised learning techniques (Girdhar et al.
2023). When actions are not expanded in the tuple, a new
action head must be trained for the modified observation and
action space, but the pre-existing embedding layer can be
preserved.

This approach aligns with the emerging trend toward
foundational models in RL, enabling more efficient train-
ing on novel tasks with limited data. This is analogous to the
recent development of large language models (LLMs) (Tou-
vron et al. 2023), which have offered a cost-effective starting
point for research, previously attainable only through signif-
icant computational investment.

Experimental Setup

We follow similar setups and experimental runs to the
benchmarks established in previous works (Chen et al. 2021;
Zheng, Zhang, and Grover 2022; Janner, Li, and Levine
2021) and the Clean Offline RL (CORL) codebase (Tarasov
et al. 2023). All of these works primarily evaluate on mu-
joco environments (e.g. Antmaze, HalfCheetah, Hopper,
Walker2d) that come with the D4RL offline dataset (Fu et al.
2021) that have various number and length trajectories as de-

scribed in the D4RL paper (Fu et al. 2021). We run the ex-
periment multiple times (4 times each with a 100 vectorized
environments) with different seeds and average the results
across runs.

As our research is focused on the DT architecture and
many of the algorithms compared against in previous works
are not amenable to the desired downstream configurations
we are interested in, we compare our results to the baseline
DT model which we label as ActionEmbedding throughout
the results. As the DT uses a conditioned reward in a way
to control what sort of actions to generate (e.g. a lower re-
ward will in theory result in the model predicting worse ac-
tions that generate lower expected rewards) we run our ex-
periments with the available conditioned rewards when they
are available from the CORL codebase (meaning they do
not come from the D4ARL dataset, rather they generally are a
value close to the maximum reward seen during training and
a value that is approximately half of the maximum reward
seen during training). To run experiments with a model for
a downstream tasks we require a model that has done pre-
training on any prior task. For this we select a single indi-
vidual task that is not the same environment or dataset as
the downstream task and train the model on that task for
50k iterations. The number of downstream-to-pretrain envi-
ronments (and not even considering the dataset) is exponen-
tially large so we choose to only run a subset of these experi-
ments. In future work we aim to utilize generalized pretrain-
ing regimes (Sun et al. 2023) to further reduce the number
of experiments that need to be run but note that these ex-
periments require significant more computational resources
(due to the model size growing significantly to accommodate
the number of environments, similar to what was shown in
(Reed et al. 2022)).

Results

Our experiments examine and shine light on the following:
(i) Can tokenization be applied to only actions for a tra-
jectory so that fewer layers of the model must be adapted for
new environments/modalities?
(ii) To what extent does the granularity of tokenization or
tokenization across features impede model performance?
(iii) Can the model adapt to new modalities with little or
no supervised training and still perform better than random?

(i) Training Comparison

The first question is examined by comparing the perfor-
mance of the baseline DT to the tokenized actions with
both the ActionTokenizedEmbedding and ActionTokenized-
SpreadEmbedding methods. Along with our proposed meth-
ods, we also include a model that only spreads the action
vector into the modality dimension but does not tokenize
the actions (ActionSpreadEmbedding) which achieves good
performance but does not allow embedding layer reuse for
downstream environments. As seen in Figure 1, the model
with the tokenized actions performs as well as the baseline
DT model. We show a comparison for all of the standard mu-
joco environments in the appendix and find only AntMaze to
be noticeably slower to train but still achieves the same per-
formance.

Train: Walker2d MediumExpert
Normalized Score Mean

score

70
60
50-
40
30
20

10

oV _
train Steps

0 5000 10000 15000 20000 25000 30000
N ActionEmbedding - 68.0 B ActionTokenizedEmbedding - 68.2
[ActionSpreadEmbedding - 75.5 ActionTokenizedSpreadEmbedding - 67.1

Figure 1: Training comparison of baseline DT (ActionEm-
bedding) versus tokenized actions for the Walker2d environ-
ment. The value following the name in the legend is the max
value for the averaged runs.

We include additional model configurations for this evalu-
ation including showing the impact of no tokenization offset
(meaning that the token range for a; and a; are the same)
as well as the use of an action index embedding rather than
the action index offsetting (as this would greatly decrease the
embedding size for the action embedding layer since the off-
set comes from the action index embedding). What we see
in Figure 1 as well as for the other mujoco environments is
that using a tokenization schema which gives a unique range
of tokens per action feature results in the model performing
as well as the baseline DT.

We also tested incorporating an additional loss metric that
embeds the states into the output sequence but found no ben-
efit by incorporating additional loss metrics in any capacity.

Since many of the features in the action space share the
same underlying unit of measurement (e.g. torque or force)
it seems plausible that they could share the same tokeniza-
tion value per feature but we find this is not the case. This
is important for many reasons, one of which is that model
size can increase quickly due to the embedding layer when
compared to the baseline and computational limits are a con-
sideration of our research.

Many of the datasets used for offline learning contain a
bimodal distribution, as seen in Figure 2. We also note that
due to the distribution of actions, as seen in Figure 2, the
tokenization or discretization schema is quite important and
we utilize a quantile tokenization schema as opposed to uni-
form binning (the offline datasets all have actions between
—1land1).

Actions - halfcheetah — medium — v2

so0000 Distribution of ag (bthigh) 00000 Distribution of a; (bshin)

>
[
c
92500 200000
g
fre
r\m‘ﬁﬁ‘fﬁ,mA ﬁ“‘\rﬂﬂ\r—v—\mwfﬁi
o 05 00 05 o 05 00 05
200 Distribution of a, (bfoot) 200000 Distribution of a3 (fthigh)
>
v
C
@ 400000 100000
g
[

| ,Mf,ﬁﬁ{mﬂ,

Value Value

Figure 2: Histogram plot of the Actions for the Halfcheetah
Environment Medium-v2 Dataset showing how the distribu-
tion of these actions is bimodal with modes generally at £1.

(ii) Quantization Fidelity

In terms of quantization fidelity (i.e. how many tokens
should the action values be binned into), we compare model
performance while varying the number of bins as seen in
Figure 3. We vary the actions from 100 to 3000 bins while
tokenizing with the included per action offset from Equa-
tion 4. As the actions are tokenized using a quantile method
(i.e. the bins are not uniform), the increase of bins results
in a increase of fidelity around the modes of the bimodal
distribution (generally +1) of the actions and presumably
increasing the fidelity around these bimodal peaks adds lit-
tle extra value (we also found quantile tokenization always
outperforms uniform tokenization which we omit).

While there is noticeable difference in performance when
comparing the number of bins for the ActionTokenized-
SpreadEmbedding model, we also note that for the Action-
TokenizedEmbedding model there is little to no difference in
performance when comparing the number of bins as seen in
Figure 4. Here we similarly plot an average of 5 runs (where
each run is 100 vectorized environments) while varying the
number of bins from 100 to 3000. We see that the perfor-
mance of the model is roughly the same for all of the num-
ber of bins and that the model is able to achieve a normal-
ized score of between 101.7 (for the case of 3000 bins) and
105.3 (for the case with 1000 bins as well as the baseline
ActionEmbedding model).

Our results indicate that the quantization to more bins is
not de-facto better but due to the increase in number of bins
resulting in larger embedding layers (which increases the
model size), the time taken for performance to saturate (i.e.
the number of training iterations) increases on these mod-
els that incorporate greater specificity from tokenization. As
limited compute is generally the case when training only the
embedding related layers of a foundation model, we suggest
keeping the number of bins to a minimum.

ActionTokenizedSpreadEmbedding Normalized Score Mean
Bin Comparison Pen-Expert

o
S
o
@

train steps
0 5000 10000 15000 20000 25000 30000 35000 40000
N 1000 Bins MM 100 Bins 3000 Bins 500 Bins

Figure 3: Comparison of number of bins for Pen environ-
ment. Here we see a general trend that more bins increases
number of training iterations needed to achieve roughly the
same performance. Although we left out the baseline model
and the bin comparison of the Action Tokenized Embedding
model here, both achieve a normalized score with a mean of
109.5 and 110.1 respectively.

(iii) Downstream Tasks

The goal with this research is aimed at how to generalize
the DT architecture which can then be used with minimal
fine-tuning on a new environment, we setup experiments that
evaluate the scenario where a model is initially trained using
a dataset associated with one environment, and then fine-
tuned on a downstream task of a novel environment (i.e. not
just a novel task within that environment).

As the state and action space of the downstream environ-
ments is different from that seen during pretraining, we com-
pare the various methods outlined above while keeping the
training regimen the same from model to model (i.e. only
allowing specific modalities of the embedding layers to be
trained or allowing all layers to be trained).

With this we see as in Figure 5 that when we are using
a pretrained model where only the embedding layers are
trained on a new downstream dataset, tokenization results
in a model with a higher normalized score than the baseline
model (ActionEmbedding). In this plot, while both the Ac-
tionTokenizedEmbedding and ActionTokenizedSpreadEm-
bedding model outperform the baseline model, the Action-
TokenizedSpreadEmbedding model is slower to train but re-
sults in lower variance in the normalized score. This sug-
gests that the tokenization and spreading of the actions into
the modality dimension allows the model to translate the
new environment actions into a format that is more simi-
lar to the pretraining environment actions albeit at a slower
pace than the ActionTokenizedEmbedding model.

In our comparative analysis for downstream tasks, we
evaluate the performance impact when all layers are allowed

ActionTokenizedEmbedding Normalized Score Mean
Bin Comparison Hopper

score

100- e -
> L
80
»
7
60 /
40-
20
[
train steps
0 5000 10000 15000 20000 25000 30000 35000 40000
I ActionEmbedding SN 100 Bins 3000 Bins
N 1000 Bins 2000 Bins 500 Bins

Figure 4: Comparison of number of bins for Hopper environ-
ment. In contrast to Figure 3 there is little impact on perfor-
mance when using an Action Tokenized Embedding model
when compared to the baseline Action Embedding model.

to be trained (versus fine-tuning only the modality specific
embedding layers). Shown in Figure 6 we see the results for
the Walker2d environment when all layers are allowed to be
updated and we observe that the Action Tokenized Spread
Embedding model outperforms the Action Embedding and
Action Tokenized Embedding model by 11 and 13 points re-
spectively for the normalized score. This outcome not only
underscores the potential of the Action Tokenized Spread
Embedding model to enhance reinforcement learning tasks
but also suggests the value of our tokenization strategy in
facilitating more efficient learning and adaptation for future
foundational RL models.

In contrast to allowing all layers to be trained for the
downstream task, we also show the case where only the em-
bedding layers are trained on the downstream task which is
a likely setup for using large general pretrained models that
due to memory constraints may not be trained where all lay-
ers can be updated (and similar in setup to what was shown
in Figure 5).

This setup is shown in Figure 7 where the Action Embed-
ding has new embedding layers specific to the downstream
environment performs substantially worse than the Action-
TokenizedSpreadEmbedding model. Here, the Action Em-
bedding model (which is equivalent to the DT) is barely able
to learn on this downstream task while the model with the to-
kenized spread actions is able to learn and achieves a score
that although it is 72% below the fully trained model, is 21
normalized points above its baseline comparison.

Unfortunately, for the offline datasets that may achieve
poor results during evaluation in the environment (e.g.
the door environment has three offline datasets, human-vl,
cloned-v1, and expert-v1, where the human-v1 and cloned-

Normalized Score Mean
Downstream-HammerExpert — Trained-AntmazeUmaze

score

120~

100~
80-
60
40
20

0
train steps
0 5000 10000 15000 20000 25000

mmm Action Tokenized Embedding Action Tokenized Spread Embedding W Action Embedding

Figure 5: Normalized scores for downstream task hammer
with expert dataset allowing updates to only embedding
layer during downstream training. Pretraining done with the
Antmaze umaze dataset.

Normalized Score Mean
Downstream Full Training—Walker2d

score

80

. M

40

0%
train steps
0 5000 10000 15000 20000 25000 30000

mmmm Action Tokenized Embedding W Action Embedding Action Tokenized Spread Embedding

Figure 6: Downstream training on Walker2d (pretrained with
Hopper medium expert dataset) allowing all layers to be
trained. In this experiment the Action Tokenized Spread Em-
bedding model outperforms the Action Embedding and Ac-
tion Tokenized Embedding model by 11 and 13 points re-
spectively for the normalized score.

vl both achieve normalized scores less than 10 while the
model trained with the expert-v1 dataset achieves a normal-
ized score of 100 which is similar to others results (Tarasov
et al. 2023)), the tokenized spread embedding model is un-
able to learn at all as seen in Figure 8.

In this experiment, the Action Tokenized Embedding is

Normalized Score Mean
Downstream Training Only Embedding—Walker2d

N)
o
score

20

15

train steps
0 5000 10000 15000 20000 25000 30000 35000

mmmm Action Embedding Action Tokenized Spread Embedding

Figure 7: Comparison between the embedding layers only
downstream training on Walker2d (pretrained with hopper
medium expert dataset for the Action Embedding and Ac-
tion Tokenized Spread Embedding models. When unable to
train the entire model (which is likely to happen due to mem-
ory constraints when training larger foundational models)
the Action Embedding model performs significantly worse
than the Action Tokenized Spread Embedding model.)

Normalized Score Mean
Downstream Training Full Training—DoorCloned

score

10

ol
train steps
0 10000 20000 30000 40000 50000

[Action Embedding [l Action Tokenized Embedding Action Tokenized Spread Embedding

Figure 8: Downstream training on door for model trained
with Door/Adroit environment with the cloned dataset. Here
we see that while the Action Embedding and Action Tok-
enized Embedding model both have quite a low normalized
score, the Action Tokenized Spread Embedding model per-
formance is near 0.

still able to generally outperform the baseline Action Em-
bedding model with its main difference being that the eval

has lower variance, for example in Figure 8 the Action Em-
bedding 0 = 4.4 while for the Action Tokenized Embed-
ding 0 = 2.1. The observed decrease in variance is possibly
due to the tokenization offering a sort of noise filter on the
actions, which is particularly useful in environments with
some stochasticity (which these offline datasets have). Ap-
plying tokenization in some manner appears particularly ad-
vantageous in environments characterized by noisy actions,
as it aids the model in integrating the noisy data into se-
quences that the model can use in a more consistent manner.

We do note that this effect is lost for poor performing en-
vironments as seen in Figure 8 where the normalized scores
are quite low implying this effect is best noticed on models
that are already performing well and will not improve the
baseline results.

Conclusion

In this work we analyzed methods to enhance the adaptabil-
ity and efficiency of Reinforcement Learning (RL) models
by incorporating tokenization schemes tailored to specific
types of input. Our findings suggest that the strategy of to-
kenization and ”spreading” actions can often facilitate more
efficient training for subsequent tasks but may have draw-
backs such as slower training and low performance in en-
vironments when the model would otherwise not be perfor-
mative. Our methodology provides a likely more general-
ized foundation for RL models, drawing parallels to the ver-
satility observed in language models, as noted in recent re-
search (Reed et al. 2022; Touvron et al. 2023) whereby mod-
els are easily able to adept to downstream tasks. Moreover,
this work echoes the broader vision of foundational models
in RL, whereby one core training schema can be adapted
across tasks, requiring minimal fine-tuning. This paves the
way for RL models that are as adaptable and efficient as con-
temporary large language models.

Our aspiration is to motivate researchers with the compu-
tational capacity to develop and distribute models that pos-
sess general RL capabilities (rather than for specific envi-
ronments which is generally the case), thereby supporting
the broader research community, particularly those limited
by computational constraints, in the pursuit of large general-
ized RL models. We anticipate that these expansive models
will exhibit emergent properties akin to those in language
models, such as zero-shot learning and the proficiency to ac-
climate to new challenges with minimal fine-tuning.

References
Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.;
Laskin, M.; Abbeel, P.; Srinivas, A.; and Mordatch, I.
2021. Decision Transformer: Reinforcement Learning via
Sequence Modeling. arxiv:2106.01345.

Fu, J.; Kumar, A.; Nachum, O.; Tucker, G.; and Levine, S.
2021. D4RL: Datasets for Deep Data-Driven Reinforcement
Learning. arxiv:2004.07219.

Gao, C.; Wu, C.; Cao, M.; Kong, R.; Zhang, Z.; and
Yu, Y. 2023. ACT: Empowering Decision Transformer
with Dynamic Programming via Advantage Conditioning.
arxiv:2309.05915.

Girdhar, R.; El-Nouby, A.; Liu, Z.; Singh, M.; Alwala, K. V.;
Joulin, A.; and Misra, 1. 2023. ImageBind: One Embedding
Space To Bind Them All. arxiv:2305.05665.

Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. LoRA: Low-Rank Adap-
tation of Large Language Models. arxiv:2106.09685.
Janner, M.; Li, Q.; and Levine, S. 2021. Offline Reinforce-
ment Learning as One Big Sequence Modeling Problem. In
Advances in Neural Information Processing Systems.

Jiang, A. Q.; Sablayrolles, A.; Mensch, A.; Bamford, C.;
Chaplot, D. S.; de las Casas, D.; Bressand, F.; Lengyel, G.;
Lample, G.; Saulnier, L.; Lavaud, L. R.; Lachaux, M.-A.;
Stock, P.; Scao, T. L.; Lavril, T.; Wang, T.; Lacroix, T.; and
Sayed, W. E. 2023. Mistral 7B. arxiv:2310.06825.

Levine, S.; Kumar, A.; Tucker, G.; and Fu, J. 2020. Offline
Reinforcement Learning: Tutorial, Review, and Perspectives
on Open Problems. arxiv:2005.01643.

Meng, L.; Wen, M.; Yang, Y.; Le, C.; Li, X.; Zhang, W.;
Wen, Y.; Zhang, H.; Wang, J.; and Xu, B. 2022. Offline
Pre-trained Multi-Agent Decision Transformer: One Big Se-
quence Model Tackles All SMAC Tasks. arxiv:2112.02845.
Paster, K.; Mcllraith, S.; and Ba, J. 2022. You Can’t
Count on Luck: Why Decision Transformers and RvS Fail
in Stochastic Environments. arxiv:2205.15967.

Reed, S.; Zolna, K.; Parisotto, E.; Colmenarejo, S. G.;
Novikov, A.; Barth-Maron, G.; Gimenez, M.; Sulsky, Y.;
Kay, J.; Springenberg, J. T.; Eccles, T.; Bruce, J.; Razavi, A.;
Edwards, A.; Heess, N.; Chen, Y.; Hadsell, R.; Vinyals, O.;
Bordbar, M.; and deFreitas, N. 2022. A Generalist Agent.
arxiv:2205.06175.

Reid, M.; Yamada, Y.; and Gu, S. S. 2022. Can Wikipedia
Help Offline Reinforcement Learning? arxiv:2201.12122.
Shi, R.; Liu, Y.; Ze, Y.; Du, S. S.; and Xu, H. 2023. Unleash-
ing the Power of Pre-trained Language Models for Offline
Reinforcement Learning. arxiv:2310.20587.

Sun, Y.; Ma, S.; Madaan, R.; Bonatti, R.; Huang, F.; and
Kapoor, A. 2023. SMART: Self-supervised Multi-task pre-
trAining with contRol Transformers. arxiv:2301.09816.

Tarasov, D.; Nikulin, A.; Akimov, D.; Kurenkov, V.; and
Kolesnikov, S. 2023. CORL: Research-oriented Deep Of-
fline Reinforcement Learning Library. arxiv:2210.07105.

Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; Bikel, D.; Blecher, L.; Ferrer, C. C.; Chen, M.; Cucu-
rull, G.; Esiobu, D.; Fernandes, J.; Fu, J.; Fu, W.; Fuller, B.;
Gao, C.; Goswami, V.; Goyal, N.; Hartshorn, A.; Hosseini,
S.; Hou, R.; Inan, H.; Kardas, M.; Kerkez, V.; Khabsa, M.;
Kloumann, I.; Korenev, A.; Koura, P. S.; Lachaux, M.-A_;
Lavril, T.; Lee, J.; Liskovich, D.; Lu, Y.; Mao, Y.; Martinet,
X.; Mihaylov, T.; Mishra, P.; Molybog, I.; Nie, Y.; Poul-
ton, A.; Reizenstein, J.; Rungta, R.; Saladi, K.; Schelten, A.;
Silva, R.; Smith, E. M.; Subramanian, R.; Tan, X. E.; Tang,
B.; Taylor, R.; Williams, A.; Kuan, J. X.; Xu, P.; Yan, Z.;
Zarov, I.; Zhang, Y.; Fan, A.; Kambadur, M.; Narang, S.; Ro-
driguez, A.; Stojnic, R.; Edunov, S.; and Scialom, T. 2023.
Llama 2: Open Foundation and Fine-Tuned Chat Models.
arxiv:2307.09288.

Wang, K.; Zhao, H.; Luo, X.; Ren, K.; Zhang, W.; and Li, D.
2022. Bootstrapped Transformer for Offline Reinforcement
Learning. arxiv:2206.08569.

Yamagata, T.; Khalil, A.; and Santos-Rodriguez, R. 2022. Q-
Learning Decision Transformer: Leveraging Dynamic Pro-
gramming for Conditional Sequence Modelling in Offline
RL. arxiv:2209.03993.

Zhao, Y.; Gu, A.; Varma, R.; Luo, L.; Huang, C.-C.; Xu, M.;
Wright, L.; Shojanazeri, H.; Ott, M.; Shleifer, S.; Desmai-
son, A.; Balioglu, C.; Damania, P.; Nguyen, B.; Chauhan,
G.; Hao, Y.; Mathews, A.; and Li, S. 2023. PyTorch
FSDP: Experiences on Scaling Fully Sharded Data Parallel.
arxiv:2304.11277.

Zheng, Q.; Zhang, A.; and Grover, A. 2022. Online Decision
Transformer. arxiv:2202.05607.

