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ABSTRACT

This paper presents a methodology to detect adversarial manipulations to image
data by examining the activation patterns in a neural network. By comparing a
sample’s layer-wise neural activations to clusters of its predicted class, we are able
to detect irregularities between a model’s layer activations and its final predicted
class. We evaluate our detection method using the FGSM attack method as well as
the Carlini-Wagner L2 attack and misclassified images from the ImageNet dataset.

1 INTRODUCTION

Increasingly, deep learning models are being placed into production systems (Paleyes et al., 2021}
Cam et al., |2019; |Davenport & Ronankil, 2018)), even though there is still a need for fundamental
research on how to use these models and understand their predictions. A vital part of understanding
how a model can be used is knowing how the model will behave to a variety of new samples and
how trustworthy it may be for these results. Often research on model trustworthiness is considered
secondary in deep learning research, where a model’s predictive power is the primary goal. This
is unfortunate as understanding how a model behaves in real-world use cases and why a model is
making predictions are essential to deploying these models.

Moreover, adversarial attacks and the potential for models to be intentionally abused is an ongoing
area of research that has shown that many of these models are quite susceptible to being “tricked”
in some manner. Well known attacks such as the fast gradient sign method (Goodfellow et al.,
2015) and the Carlini-Wagner attacks Carlini & Wagner|(2016), enable an image to be imperceptibly
altered while causing the model to erroneously misclassify the image in varying ways and degrees of
human detection. Adversarial attacks are continually evolving, and while defending against specific
attack types may be one of the most successful ways to stop a particular attack, doing so requires
knowledge of the attack before hand. As attackers adapt it can be prohibitively expensive to train
new models to defend against ever evolving attacks. A general adversarial defense that can be used
to filter out novel attacks can be extremely useful not only in real-world deployments but for giving
a baseline metric to compare against in future research.

In this paper, we work towards model robustness by proposing a method that is capable of detecting
adversarial attacks without the necessity of foreknowledge of attack types. We examine how tracking
neuron activations for each layer in a neural network can be indicative of activations that do not
follow the trend for prototypical examples of the predicted class. We examine activations clustered
in a low-dimensional embedded space, which gives us a meaningful way to visualize the otherwise
difficult high dimensionality of activations. Finally, we detail a way these embedded activations can
be scored against their predicted class using calculated centroids to filter misclassified predictions
and adversarial attacks without having prior knowledge of the attack.

2 RELATED WORK

Kim et al.| (2018)) leverage neuron activations to score if a model has learned an abstract concept
related to a predicted class. Their work also examines how learned sensitivity scores could be used
as an alert mechanism against adversarial attacks. |Chen et al.| (2019) use unsupervised clustering
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Figure 1: Progressive clustering of class
with adversarial examples misclassifed as
that class for the MobileNetV2 architecture

Figure 2: Distance to Predicted Centroid By
Layer

of the neural activations of the training data taken from the last hidden layer to detect anomalous
(poisoned) data in the training set. We build off of this prior work and use clustering with added
analysis and filtering, explained in Section[3]

Katzir & Elovici| (2019) examines layer-wise spatial behavior of samples as they flow through the
neural network. This approach requires that a portion of the training samples be held aside and used
to model the behavior of unperturbed inputs. The authors do not address the problem of poisoned
training data, though the issue has been addressed elsewhere (Shafahi et al.,[2018).

3 METHOD

We show that there is meaningful information being imparted at each layer as a sample progresses
from input to prediction by examining a group of images from the same correctly predicted class and
progressively look at how the activations at each layer cluster when compared to incorrect classifi-
cations. We compare these clusters in an embedded activation space where we have transformed all
the activations for that layer. Although we are using the entire training dataset to create the embed-
ded space, we use a small subset of this data that we know to be correctly predicted by the model,
and calculate an average centroid for each layer that we later consider as our cluster focal point.
By looking at the per-layer clustering, we are able to see a representative sample of what an ideally
predicted class will look like as it moves through the deep neural network. This gives us insight not
only into if the model is working—we expect the clustering for a classification to become more stable
and separable if the model is predicting effectively—but gives us a way to quantify by how much the
model has learned in a way similar to a loss function.

As an illustration, Figure [I] shows how activations from a particular class become increasingly
closer together near the later layers to form cohesive regions in the embedded space. We also see
that adversarial examples generated from these same images, which the the model misclassifies, do
not follow this pattern.

Comparing adversarial vs misclassified For looking at how adversarial examples may be filtered
out, we begin by looking at the embedded space for a subset of our original training dataset that we
know to not contain adversarial examples. As we are only using a subset of the training data, this
will allow us to still use a training dataset that has been “poisoned” with a backdoor attack. In
the embedded space for each layer, we find the average cluster centroid for the class and filter out
any outliers. The intuition behind doing this is that our model will give us more unique and defined
centroids when compared to the other classifications the deeper along the network we progress. This
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can be verified by examining the average euclidean distance between all the class centroids, as the
adversarial example travels through the network this average distance grows.

4 EVALUATION: TRACKING “DRIFT” FROM AVERAGE CLUSTER CENTROID

While the traditional way to evaluate how well a model has learned is based around comparing
some metrics related to a model’s misclassification rate, by examining a sample’s activations in this
embedded space we can also compare the clustering per layer to understand how well the model has
learned. This is premised upon the notion that for a deep learning model, the later layers produce
activations that are more linearly separable. By tracking how well these intermediate layers project
activations that separate on a per-class basis, we are able to provide some proof about how robust a
model is and provides insight into how attacks work. The calculation of the centroid for class n at
layer i is,

1
centroid; ,, = i Z E; .

Where F; ,, are the embedded activations (which there are M of) in the layer ¢ from class n. For
Figure 3] we are plotting the average distance for each class to its predicted centroid for samples the
model is known to have predicted correctly. While there is some variance, the general trend is for
the samples to become increasingly near their predicted centroid at the later layers. This shows that
in the embedded space, the activations are becoming closer to one another and thus the later layers
in the model are successfully projecting the data in a way that is more separable.

In Figure [2| the top shows us what the distance to the class centroid for the data that fit the trans-
formation looks like. The bottom graph shows the distance to the misclassified class for adversarial
examples. With the adversarial examples, the distance to the predicted class centroid tends to in-
crease, which is the opposite of what occurs with unperturbed examples, which we would expect to
trend towards all being closer to their predicted centroid at later network layers.

Filtering A way to filter misclassifications and unseen adversarial attacks is by using a weighted
average score of which centroid a sample is closest to for each layer in the embedded activation
space. This weighted average score is given by
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where a; is a binary variable that indicates if the nearest centroid for the sample at layer ¢ is the
centroid for the samples predicted class at that layer. We also use a weight that corresponds to the
layer in the network as this incorporates the observance that having high variability to which class
centroid a sample is closest to near the final layers appears to be a strong indicator of being an
adversarial image.

Algorithm 1 Filtering with Per Class Activation Centroids

Input: Training dataset D with class labels y = {1,...,n}
1: Train DNN using D with (z,y)

2: Using D, (subset of D), verify targets are correctly labeled
3: forall z; € D, do

4:  layerActivations[0...k][¢] = eachLayerOutputs(x)

5. end for

6: for all j in DNN layers do

7:  embeddedActivations = reduceDimensions(layerActivations[j])
8: forallm =0tondo

9: classActivations = embeddedActivations[y == m]
10: centroid[j][m] = calculateCentroid(classActivations)
11:  end for
12: end for

Results Our results come from fine-tuning a pretrained VGG-16 model (Russakovsky et al.| [2015))
and MobileNetV2 model (Sandler et al., |2019) on a subset of the imagenet dataset. We are using a
pretrained network as we had a desire to use a network that is deployed in real world use cases and
has a generally agreed upon baseline result for the dataset at hand.

For the initial fine-tuning and training of the model we are using the Keras framework with UMAP
for dimensionality reduction. We chose to use UMAP (number of target dimensions = 2; we leave
systematic evaluation of higher target dimensions for future work—if we are able to achieve reason-
able results using such a small target dimension size, then we conjecture that we could obtain better
results with higher dimensionality) clustering based on visual inspection of a few different dimen-
sionality reduction techniques. Our procedure to generate centroids is shown in Algorithm |1f and
with these centroids, we can filter our results with the weighted average score for a given sample.

While looking at the weighted average score, we compare our results in Figured] where our baseline
is using the output probabilities that would filter out “unsure” results in an attempt to find misclassi-
fied and adversarial attacks{ﬂ Our test dataset is created with an even split of images from imagenet
and both FGSM and CW?2 generated images from imagenet. Our results such as an AUC of 0.74 for
the CW2 attack and an AUC of 0.66 for images from FGSM (compared to the baseline of 0.0067
and 0.085 respectively for the comparative CW2 and FGSM baseline) suggest that there are ways
to filter potential adversarial results using only what our model has already been trained on. This
methodology could also be used in future research as it requires no further results besides access to
the underlying model activations.

5 CONCLUSION

We view future work that attempts to extract more information from a models activations as very
promising and as an area that will become increasingly important as models become deployed in
the real world. While it may become increasingly difficult to explain what a model has learned
from its weights as models explode in the number of layers and parameters (Brown et al., 2020;
Arivazhagan et al.,[2019; |Shazeer et al.,[2017)), we view the use and examination of activations as a
potential avenue for gleaning insight about a deployed model and a realistic way for a system with a
human in the loop to understand the model predictions. Understanding what is influencing a models

"We are using the output probabilities of a multi-class prediction for a binary classification problem we have
not trained any model for, so this baseline is likely to be below a random classifier for an even split of normal
to adversarial examples. We still feel this is a representative baseline.
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predictions along the network is an important aspect for any model that is to be deployed with a
human in the loop system (Office, [2019).

In this work, we demonstrate a way that unseen adversarial attacks and misclassified images can
potentially be identified. Additionally, this technique provides a way that more information can
be extracted from our model and provides insight into how the models predicted results relate to a
particular class and sample as it passes along the network. Along with this, the information from
these activation’s provide a higher level understanding of how well the model is potentially working.
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