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Introduction
In finance, the Heston model, describes the evolution of volatility of an underlying asset. The Heston model is 

a stochastic volatility model. The model assumes that the volatility of the asset follows a random process, or 

random walk. 

The Heston Model has five independent parameters, all of which can be determined by calibrating to the 

market-observed prices of European options of various strikes or maturity dates. Once a set of parameters 

has been determined, you can prive other options (parameters are calibrated). Other European options can be 

priced or American options. The underlying asset price follows a lognormal process, the variance (V) follows a 

mean-reverting square root process:

dSt = rSdt + v SdZ1

dv = -ΚHV - V¥)dt+Ω v dZ2

where:

r is the risk-free interest rate

dZ1 and dZ2 are two correlated standard Brownian motions 

5 Parameters are:

V0=initial variance

V¥= long-run variance

Κ = speed of mean reversion

Ω = volatility of volatility 

Ρ = correlation 

In General, the price at time (t) of a European call options maturity date at time (T) is given by the discounted 

expected value:

CT = ã
-rHT-tL Ù0

¥Hã
x

- KL + pHxL â x

Where Log@sD = x

And P(x) is the probability density function of the underlying logarithmic asset price. 

Code
For this, we use the mathematica function Ito Process to allow for the “randomness” that the Wiener process 

is.  This part is the “cW” equation we use.  The 2 differential equation’s are “solved” in the hestonmodel vari-

able and then the output is generated by running 
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Code
For this, we use the mathematica function Ito Process to allow for the “randomness” that the Wiener process 

is.  This part is the “cW” equation we use.  The 2 differential equation’s are “solved” in the hestonmodel vari-

able and then the output is generated by running 

hestonmodel = ItoProcess@8
âs@tD�Μ s@tD ât+Sqrt@r@tDD s@tD âws@tD,

âr@tD�Κ HΘ-r@tDL ât+Ξ Sqrt@r@tDD âwΝ@tD<,

8s@tD,r@tD<,88s,r<,8s0,r0<<,t,8ws,wΝ<écW@ΡDD;

cW@Ρ_D:=ItoProcess@880,0<,IdentityMatrix@2D<,88w1,w2<,80,0<<,t,881,Ρ<,8Ρ,1<<D;

output= RandomFunction@
hestonmodel�.8Μ®0,Κ®2,Θ®1,Ξ®1�2,Ρ®-1�3,s0®25,Subscript@r,0D®1.25<,

80,1,0.005<,1,Method®"StochasticRungeKutta"D;

From here, we will plot what the random process looks like:

ListLinePlot@output@"PathStates", 1DD
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This plot is a Wiener Process that we then project onto the data for a something such as an asset.  We 

do this by showing how the volatility fluctuates due to the change in price (here we act as if the x axis 

were are the price of the asset, it is not a time series) and the volatility is then taken from the y axis.  

  

  From here we can plot it as if it were a time series by not including the price since the heston model is 

more interested in understanding the underlying volatility of some asset.   You can follow the intial 

random process here see how it follows the previous plot but this plot is “time series” in nature.  

ListLinePlot@output@"PathComponent", 2D, PlotLabel ® "volatility"D
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Since we are not limited to plotting to 1 asset, or even one possible outcome of an asset below we will 

plot 5 and show how they vary amongst themselves.
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Since we are not limited to plotting to 1 asset, or even one possible outcome of an asset below we will 

plot 5 and show how they vary amongst themselves.

  

output = RandomFunction@
hestonmodel �.

8Μ ® 0, Κ ® 1, Θ ® 1, Ξ ® 1 � 2, Ρ ® -1 � 3, s0 ® 25, Subscript@r, 0D ® 1.25<,

80, 1, 0.005<, 5, Method ® "StochasticRungeKutta"D;

ListLinePlot@output@"PathComponent", 2D, PlotLabel ® "volatility"D
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From here we can start to further understand the parameters, for instance, as Θ tends to 0, the volatility 

tends 0 as well.  This intuitevly makes sense as the long run variance is 0, then an assets price would 

become more stable as future expected price would be within a much smaller predicted range.  

  

  

output = RandomFunction@
hestonmodel �.

8Μ ® 0, Κ ® 1, Θ ® 0, Ξ ® 1 � 2, Ρ ® -1 � 3, s0 ® 25, Subscript@r, 0D ® 1.25<,

80, 2, 0.005<, 5, Method ® "StochasticRungeKutta"D;

ListLinePlot@output@"PathComponent", 2D, PlotLabel ® "volatility"D
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ListLinePlot@output@"PathComponent", 1D, PlotLabel ® "Price of the asset"D
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This follows for any number, as Θ tends to some Α in the long run the volatility will reach this level and 

the only volatility will be due to the random process, not long run expectations of an assets variance.  

Example, if the long run volatility was 10.

output = RandomFunction@
hestonmodel �.

8Μ ® 0, Κ ® 1, Θ ® 10, Ξ ® 1 � 2, Ρ ® -1 � 3, s0 ® 25, Subscript@r, 0D ® 1.25<,

80, 3, 0.005<, 5, Method ® "StochasticRungeKutta"D;

ListLinePlot@output@"PathComponent", 2D, PlotLabel ® "volatility"D
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Another interesting aspect to note is how Ξ, the volatility of the volatility, controls the amount of 

"randomness" that the volatility will have.  For instance when Ξ tends to 0, the volatility  will become 

"stable" at the level of lon term volatility.  This makes sense from the eqatuations as the process 

evolves the WeinerProcess will dhave less and less of an effect.
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output = RandomFunction@
hestonmodel �.

8Μ ® 0, Κ ® 1, Θ ® 1, Ξ ® .01, Ρ ® -1 � 3, s0 ® 25, Subscript@r, 0D ® 1.25<,

80, 5, 0.005<, 5, Method ® "StochasticRungeKutta"D;

ListLinePlot@output@"PathComponent", 2D, PlotLabel ® "volatility"D
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This model has other extensions as well though, for instance the Chen Model is very similar and is used 

to model the evolution of interest rates.   Using the same initial equation for âr[t], we extend it to 3 

different differential equations.

âr@tD � HΘ1 - r@tDL ât + Ξ Sqrt@r@tDD âwΝ@tD
âa@tD � HΘ2 - a@tDL ât + Ξ Sqrt@a@tDD âwΝ@tD
âp@tD � HΘ3 - p@tDL ât + Ξ Sqrt@p@tDD âwΝ@tD

chenmodel@Θ1_, Θ2_, Θ3_, Ξ_, 8r0_, a0_, p0_<D := ItoProcess@8
âr@tD � HΘ1 - r@tDL ât + p@tD Sqrt@r@tDD âw@tD,

âa@tD � HΘ2 - a@tDL ât + p@tD Sqrt@a@tDD âw@tD,

âp@tD � HΘ3 - p@tDL ât + Ξ Sqrt@p@tDD âw@tD<,

r@tD, 88r, a, p<, 8r0, a0, p0<<, t, w é WienerProcess@DD

Which we can then use to show the volatility of the interest rates rather than a super generalized asset.
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ListLinePlot@RandomFunction@chenmodel@1, 2, 1.2, 1, 81, 1, 1<D,

80, 1, 0.01<, 6, Method ® 8"StochasticRungeKutta"<DD
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ListLinePlot@
RandomFunction@chenmodel@1, 2, 1.2, 1, 81, 1, 1<D, 80, 1, 0.01<, 6, Method ®

8"StochasticRungeKutta", "ProjectionFunction" ® Function@8t, xvec<, Abs@xvecDD<D,

PlotRange ® All, ImageSize ® 300D
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Followed Examples on Mathematica Tutorials as well to understand how these models are implemented and 

what is happening.
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